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Abstract

We present a study of the linear hydrodynamic stability of purely conductive Poiseuille ¯ow in three-dimensional
horizontal rectangular channels uniformly heated from below. Its originality is to modellize the ¯ow using realistic

conditions on all the boundaries of the channel, in particular, no-slip conditions on the vertical lateral boundaries.
The aim of this paper is to provide quantitative results for the values of the critical dimensionless parameters. When
the Rayleigh number Ra is higher than the critical value Ra�, the instabilities are shown to be three-dimensional

horseshoe-shaped transversal rolls for Reynolds numbers Re smaller than the critical value Re�, and longitudinal
rolls for Re> Re�. The results are given for a wide range of the Prandtl number (10ÿ6 R Pr R 105) and of the
transversal aspect ratio B of the duct (0.1 R B R 5.4 and B 41). # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The mixed convection ¯ows in horizontal rectangu-

lar channels heated from below are also called

Poiseuille±BeÂ nard ¯ows (PBF). Their study has given

rise to numerous works because this ¯ow remains rela-

tively complex, with some aspects misunderstood. This

is partly due to the fact that the PBF is characterized

by four dimensionless parameters (Ra, Re, Pr, B ), and

several ¯ow patterns.

Some of the papers on the PBF are of practical or

technological interest: e.g. in meteorology [1,2], in the

cooling of electronic equipment [3±5], or in the pro-

duction of thin ®lms in chemical vapour deposition

reactors [6±8]. Other papers aim at understanding the

two main thermoconvective roll patterns of this ¯ow

(the transversal rolls and the longitudinal rolls) and

their stability [9±16]. Fig. 1 shows `transversal rolls'

and `longitudinal rolls', subsequently noted R_ and

R//, respectively.

A bibliographical summary of the linear stability

studies on the transitions between the basic ¯ow and

the R// or the R_ in the PBF is presented in Table 1,

together with the form of the normal modes and the

type of the thermoconvective rolls observed just

beyond the instability threshold. In those papers, f rep-

resents any perturbation, kx and ky are the wave num-

bers in the axial and transversal directions,

respectively, and s=sr+isi is the complex time ampli-

®cation coe�cient.
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The two ®rst linear stability studies of the PBF by

Velte [17] and Sani [18] provide qualitative results

about the growth of R// in ®nite lateral extension

ducts. In particular, the critical Rayleigh number Ra �//,
corresponding to the transition between the basic ¯ow

and the R//, is shown to increase when B decreases.

Mori and Uchida [19], considering in®nite lateral

extension ducts, focus on R//. The critical Rayleigh

number Ra �// and the critical wave number k �y are

shown to be independent of Re (Ra �//=1708 and

k �y=3.13). The linear theory developed by Gage and

Reid [20] considers transversal, longitudinal or oblique

rolls in in®nite lateral extension ducts, but only at

Pr = 1. It has been generalized to all Prandtl numbers

in the case of R_ by Platten [21], using a restricted

variational technique. However, to our knowledge, the

most comprehensive linear stability study of the PBF

is Luijkx's work [9]. It provides precise quantitative

results for a wide range of the dimensionless par-

ameters of the ¯ow, both for channels of ®nite and in-

®nite lateral extension.

In Fig. 2, we remind the reader of the stability dia-

gram when B 41. At Re = 0, the basic ¯ow becomes

unstable at Ra= 1708. The critical Rayleigh number

Ra �//, corresponding to perturbations of the form A�z�
eikyy, is independent of Re (Ra �//=1708), whereas the

critical Rayleigh number Ra �_ for the appearance of

the R_ (perturbations of the form A�z� ei�kxx�sit��,

Nomenclature

B transversal aspect ratio of the duct, l/h
g gravitational acceleration
h channel height in z-direction

kx, ky wave numbers in x- and y-directions
k upward vertical unit vector
l channel width in y-direction

LDA laser Doppler anemometry
L eigenvalue problem
P dimensional and dimensionless pressure

PBF Poiseuille±BeÂ nard ¯ow
Pr Prandtl number, n 0/a 0

R_ transversal rolls
R// longitudinal rolls

Ra Rayleigh number, gb 0(ThÿTc)h
3/n 0a 0

Ra� critical Rayleigh number, min(Ra �_, Ra
�
//)

Ra �_ critical Rayleigh number for the appear-

ance of transversal rolls
Ra �// critical Rayleigh number for the appear-

ance of longitudinal rolls

Ra conv
_ critical Rayleigh number between convec-

tive and absolute instability domains for
transversal rolls

Re Reynolds number, hU-ih/n 0

Re� critical Reynolds number corresponding to
the transition between transversal and
longitudinal rolls

S size of the eigenvalue problem square
matrices (I MAX � J MAX+K MAX � L
MAX+M MAX � N MAX)2

t dimensionless time
T dimensional and dimensionless ¯uid tem-

perature

Tc, Th temperature of the cold top and hot bot-
tom plates of the channel

u, v, w dimensionless horizontal, transversal and
vertical velocity components

U, V, W dimensional horizontal, transversal and
vertical velocity components

U 0 average velocity of the two-dimensional

Poiseuille ¯ow
hU- i average velocity of the three-dimensional

basic ¯ow

V velocity vector (U, V, W )
Vr transversal roll velocity
x, y, z dimensionless axial, spanwise and vertical

coordinates.

Greek symbols
a thermal di�usivity
b thermal expansion coe�cient

l dimensionless transversal roll wavelength
n kinematic viscosity
r mass per unit volume

s complex time ampli®cation coe�cient,
sr+isi

t dimensionless transversal roll time period.

Subscripts

i, r imaginary and real part of complex num-
bers.

Superscripts
E, O even, odd

max maximum
0 reference state or average value of the ¯ow
� critical value

- basic state for the linear stability study
' in®nitesimal perturbations

Ã normal mode amplitudes.
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increases with Re. Lastly, for any perturbations of the

form A�z� ei�kxx�kyy�sit�, Squire's theorem [22] may be

invoked and produces curve 2 [23]. Therefore, without

a lateral con®nement and whatever Re, the basic ¯ow

becomes linearly unstable towards the R// at

Ra�=1708.

Qualitative results for channels of ®nite transversal

extension (see Fig. 3) are brie¯y presented in [23,24],

together with the existence of the two types of rolls.

The aim of this paper is to provide a quantitative para-

metric study of Ra�=Ra�(Re, Pr, B ). Fig. 3 shows

that the lateral con®nement has two e�ects: ®rst, the

basic ¯ow is stabilized, since Ra�=min(Ra �//, Ra �_)
increases when B decreases; secondly, at small Re

(Re< Re�), R_ are favoured by the presence of the

lateral vertical walls. On the other hand, when

Re > Re�, the average ¯ow aligns the rolls parallel to

the axis of the channel. Finally, it can be noted that

Ra �_ is an increasing function of the Prandtl number

Pr, while Ra �// is independent of Pr. Therefore, Re�

decreases when Pr increases. Thus, Ra �//=Ra �//(B ),

Fig. 1. Schematic representation of the three main ¯ow patterns of the Poiseuille±BeÂ nard ¯ow.

Fig. 2. Linear stability diagram of the Poiseuille±BeÂ nard ¯ow

in in®nite lateral extension ducts; three types of perturbations

are considered.
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Ra �_=Ra �_(Re, Pr, B ), and Re�=Re�(Pr, B ). The

main goal of the present paper is to give numerical

values for these functions.

Recent experimental [14,25], theoretical [26,27] and

numerical [28±30] studies have shown the existence of

complex ¯ow con®gurations like superpositions of R_

and R// [25,28,29], intermittent patterns [14], oblique

rolls [30], or horseshoe patterns [28]. Other recent nu-

merical works [31,32] have used the PBF as a test-case

to study the in¯uence of the open inlet and outlet

boundary conditions of the computational domains,

on the development of the thermoconvective patterns.

Finally, studies [15,16,27,33] have shown that the

notions of convective and absolute instability is a fun-

damental point to properly determine the transition

thresholds between the basic ¯ow and the di�erent

types of thermoconvective ¯ows. Using a weakly non-

linear theory based on a Ginzburg±Landau equation

MuÈ ller et al. [16] have determined the transition curve

Ra conv
_ between the convective and absolute instability

zones for the R_. Ouazzani et al. [15], experimentally,

and Nicolas et al. [33], numerically, have shown that

the transition between the basic ¯ow and the R_ corre-

sponds to the curve Ra conv
_ , provided that the ¯ow is

not continuously perturbated near the inlet. However,

if the ¯ow is continuously perturbated near the inlet

(e.g. mechanically by some vibrating device), the exper-

iments should coincide with Ra �_, and not with Ra conv
_ .

Therefore, the knowledge of Ra �_(Re ) is also of inter-

est for future experiments. Finally, the Ginzburg±

Landau equation used by MuÈ ller et al. [16] is a mono-

dimensional model-equation allowing one to describe

the space and time modulations of the amplitude of a

perturbation in a bi-dimensional ¯ow; but, it cannot

take into account the e�ect of the lateral con®nement

of the duct. So, at the end of this paper, we will com-

pare the results of the two-dimensional (2-D) weakly

non-linear studies with the results of the three-dimen-

sional (3-D) linear stability theory. As a general rule,

the results obtained by the linear theory will be dis-

cussed in light of other recent results of the literature.

Fig. 3. Linear stability diagram of the Poiseuille±BeÂ nard ¯ow

in ®nite lateral extension ducts; the in¯uence of the Prandtl

number is represented.

Table 1

The di�erent linear stability studies concerning the fully-established Poiseuille±BeÂ nard ¯ow

References Transversal

aspect ratio

Pr Re Form of the perturbations

(normal modes)

Concerned

roll patterns

Velte [17] Finite B= 1 Qualitative study f( y, z, t )=A( y, z ) esr t

with sr=0

R//

Sani [18] Finite Qualitative study f( y, z, t )=A( y, z ) esr t

with sr=0

R//

Mori and Uchida [19] In®nite 0.7 230±570 f( y, z, t )=A(z ) cos (kyy ) esr t

with sr=0

R//

Gage and Reid [20] In®nite 1 10±106 f(x, y, z, t )=A(z ) ei�kxx�kyy�sit� esr t

with sr=0

R//, R_, Roblique

Platten [21] In®nite 0.7±7 0±6700 f(x, z, t )=A(z ) ei�kxx�sit� esr t

with sr=0

R_

Luijkx et al. [24] Finite Qualitative study R//, R_

Luijkx [9] In®nite 0±453 0±8000 f(x, y, z, t )=A(z ) ei�kxx�kyy�sit� esr t

with sr=0

R//, R_

Luijkx [9] Finite 0 R B R 5.4 0±105 0±1770 f(x, y, z, t )=A( y, z ) ei�kxx�sit� esr t

with sr=0

R//, R_

Platten and Legros [23] In®nite 7 0±100 f(x, y, z, t )=A(z ) ei�kxx�kyy�sit� esr t

with sr=0

R//, R_

Platten and Legros [23] Finite B= 2 and 5.2 1±453 0±10 f(x, y, z, t )=A( y, z ) ei�kxx�sit� esr t

with sr=0

R//, R_
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2. Theoretical analysis

The linear stability analysis of the Rayleigh±BeÂ nard

problem (Re= 0) in ducts of ®nite lateral extension,
has already been studied by Luijkx and Platten [34]
and Platten and Legros [23]. In this paper (Re$0), we

consider the ¯ow of a pure incompressible Newtonian
¯uid, in an in®nite horizontal channel of rectangular
cross section. Pure Poiseuille ¯ow is driven by a press-

ure gradient @P/@x. The geometry and the di�erent
boundary conditions are presented in Fig. 4. The hori-
zontal boundaries (Z=2h/2), rigid and perfectly heat
conducting, are maintained at constant temperatures,

the bottom plate being heated (T=Th) and the top
plate cooled (T=Tc). The lateral boundaries (Y=21/
2) are also rigid but perfectly heat insulating. The gov-

erning equations in the Boussinesq approximation are:8>>>>><>>>>>:

r � V � 0

@V

@ t
� �V � r�V � ÿ 1

r0
rP� n 0r2V� b0�Tÿ T 0�gk

@T

@ t
� V � rT � a0r2T

�1�

where r0, n0, b0 and a0 are de®ned at the average tem-
perature of the ¯ow T 0=(Th+Tc)/2.

2.1. Computation of the analytical form of the basic
¯ow

We seek a basic state V
-
=(U

-
(Y, Z ), 0, 0), T

-
=T

-
(Z )

and P
-
=P

-
(X, Z ) given by:8>>>>>>>><>>>>>>>>:

@ �P

@X
� r0n 0

�
@ 2 �U

@Y 2
� @ 2 �U

@Z 2

�
@ �P

@Z
� r0b0g� �Tÿ T 0�

�T � T 0 ÿ �Th ÿ Tc�
h

Z

�2�

We introduce dimensionless variables by the following
transformations:

X4hx �U4U 0 �u

Y4 ly �Tÿ T 04 �Th ÿ Tc� �T �3�

Z4hz �P4
a0n 0r0

h2
�P

where the scaling factor U 0=(KPh
2/12r0n0) represents

the average velocity of the 2-D Poiseuille ¯ow, induced
by the horizontal pressure gradient ÿKP=(@P

-
/@X ).

Thus, the dimensionless temperature pro®le is
T
-
(z )=ÿz and the dimensionless form of the basic

¯ow u-( y, z ) satis®es the following equation, in which
B=l/h is the transversal aspect ratio of the channel:

1

B 2

@ 2 �u

@y2
� @

2 �u

@z2
� ÿ12 with

�
�u� y �21=2� � 0
�u�z �21=2� � 0

�4�

The solution of (4) is searched in the form u( y,
z )=6(1/4ÿz2)+P( y )Q(z ). The term 6(1/4ÿz2) corre-

sponds to the pro®le of the 2-D Poiseuille ¯ow with
unit average value. Thus, Eq. (4) gives:8>>><>>>:

d2P� y�
dy2

ÿ KB 2P� y� � 0

d2Q�z�
dz2

� KQ�z� � 0

�5�

where K is the positive separation constant. The sol-

ution of (5) is:�
P� y� � A1 ch� ����

K
p

By� � A2 sh� ����
K
p

By�
Q�z� � C1 cos� ����

K
p

z� � C2 sin� ����
K
p

z� �6�

where A1, A2, C1 and C2 are the four integration con-

stants. Remember that u-( y, z ) has to be symmetrical
about the horizontal and vertical midplanes, implying
A2=0 and C2=0. The application of u-(z = 1/2)=0

gives
����
K
p � �2n� 1�p, with n $ Z. Therefore, the gen-

eral form of the solution is:

�u� y, z� � 6

�
1

4
ÿ z2

�

�
X1
n�0

An ch��2n� 1�pBy� cos��2n� 1�pz�
�7�

The constants An are determined by the last boundary
condition u-( y= 1/2)=0 which is still to be satis®ed,
i.e.:

Fig. 4. System of coordinates and boundary conditions for

the ®nite lateral extension duct.
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X1
n�0

An ch

��
n� 1

2

�
pB

�
cos��2n� 1�pz�

� 6

�
z2 ÿ 1

4

� �8�

Multiplying the two sides of (8) by cos(mpz/2), with
m $ Z, integrating for ÿ1/2 R z R 1/2, and using the

orthogonality relations, we get:

An � 48�ÿ1�n�1

�2n� 1�3p3 ch

��
n� 1

2

�
pB

� �9�

Finally, the reduced velocity pro®le of the basic ¯ow

is:

�u� y, z� � 6

�
1

4
ÿ z2

�

�48
p3
X1
n�0

�ÿ1�n�1 ch��2n� 1�pBy� cos��2n� 1�pz�
�2n� 1�3 ch

��
n� 1

2

�
pB

� �10�

The dimensional average velocity hU- i and the dimen-

sional maximum velocity U
-max of the 3-D basic ¯ow

u-( y, z ), which are functions of the aspect ratio of the
duct, are listed in Table 2.

2.2. Perturbation equations

The dimensionless and linearized equations for in-
®nitesimal disturbances (denoted by ') read:

@u 0

@x
� 1

B 2

@v 0

@y
� @w

0

@z
� 0 �11�

1

Pr

@u 0

@ t
� Re �u

@u 0

@x
� Re

B 2
v 0
@ �u

@y
� Re w 0

@ �u

@z

� ÿ@P
0

@x
� r2u 0 �12�

1

Pr

@v 0

@ t
� Re �u

@v 0

@x
� ÿ@P

0

@y
� r2v 0 �13�

1

Pr

@w 0

@ t
� Re �u

@w 0

@x
� ÿ@P

0

@z
� r2w 0 � Ra T 0 �14�

@T 0

@ t
� Re Pr �u

@T 0

@x
ÿ w 0 � r2T 0 �15�

where r2 � �@ 2=@x2� � �1=B2��@ 2=@y2� � �@ 2=@z2�, Re �
h ÅUih=n0 is the Reynolds number, Ra=gb0(ThÿTc)h

3/
n0a0 is the Rayleigh number and Pr=n0/a0 is the
Prandtl number. Note that here we have used di�erent

scaling factors for the basic ¯ow and for the disturb-
ances, namely:

U04
a0

h
u 0 T 0 ÿ T 04 �Th ÿ Tc�T 0

V 04
a0

l
v 0 P 04

a0n 0r0

h2
P 0 �U4 h �Ui �u �16�

W 04
a0

h
w 0 t4

h2

a0
t

Assuming0BBBB@
u 0�x, y, z, t�
v 0�x, y, z, t�
w 0�x, y, z, t�
P 0�x, y, z, t�
T 0�x, y, z, t�

1CCCCA �
0BBBB@

û� y, z�
v̂� y, z�
ŵ� y, z�
P̂� y, z�
T̂� y, z�

1CCCCAeikxx est �17�

where kx is the wave number of the disturbance in the
x-direction, and s the ampli®cation factor, we get:

ikxû� 1

B 2

@ v̂

@y
� @ ŵ
@z
� 0 �18�

s
Pr

û� ikx Re �uû� Re

B 2

@ �u

@y
v̂� Re

@ �u

@z
ŵ

� ÿikxP̂� �r2
2 ÿ k2x�û

�19�

s
Pr

v̂� ikx Re �uv̂ � ÿ@ P̂
@y
� �r2

2 � k2x�v̂ �20�

Table 2

Average and maximum velocities of the 3-D basic ¯ow as a

function of the aspect ratio of the duct

B hU- i U
-
max

0.1 0.009370U 0 0.015000U 0

0.5 0.171511U 0 0.341615U 0

1 0.421731U 0 0.884056U 0

2 0.686045U 0 1.366462U 0

3 0.789951U 0 1.472189U 0

3.63a 0.826382U 0 1.489661U 0

4 0.842439U 0 1.494218U 0

5 0.873950U 0 1.498798U 0

10 0.936975U 0 1.499999U 0

100 0.993698U 0 1.5U 0

1 U 0 1.5U 0

a Corresponds to the experiments of Ouazzani et al. [13±15].
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s
Pr

ŵ� ikx Re �uŵ � ÿ@ P̂
@z
� �r2

2 ÿ k2x�ŵ� Ra T̂ �21�

sT̂� ikx Re Pr �uT̂ÿ ŵ � �r2
2 ÿ k2x�T̂ �22�

where H2
2=(1/B 2)(@2/@y2)+(@2/@z2) is the 2-D Laplace

operator.

At this stage, two cases have to be considered: kx=0
and kx$0.

2.3. kx=0: the longitudinal rolls

Eqs. (18)±(22) reduce to:

1

B 2

@ v̂

@y
� @ ŵ
@z
� 0 �23�

s
Pr

û� Re

B 2

@ �u

@y
v̂� Re

@ �u

@z
ŵ � r2

2û �24�

s
Pr

v̂ � ÿ@ P̂
@y
� r2

2v̂ �25�

s
Pr

ŵ � ÿ@ P̂
@z
� r2

2ŵ� Ra T̂ �26�

sT̂ÿ ŵ � r2
2T̂ �27�

Eqs. (23), (25)±(27) is the standard 2-D Rayleigh±
BeÂ nard eigenvalue problem for vÃ, wÃ , PÃ and TÃ (except
for the lateral con®nement given by B which does not

allow a normal mode analysis in the y-direction) on
which is based the calculation of Ra �//, independent of
Re and Pr, already solved before in Ref. [34].

2.4. kx$0: computation of the 3-D structures by the
Galerkin method

When kx$0, the system of ®ve equations (18)±(22)
can be reduce to three equations by eliminating uÃ from
Eq. (18) and PÃ from Eq. (19). Eqs. (20)±(22) become:

Qv̂ÿ 1

k2xB
2

@

@y
Q
@ v̂

@y
� i Re

kxB 2

 
@ 2 �u

@y2
v̂� @ �u

@y

@ v̂

@y

!

ÿ 1

k2x

@

@y
Q
@ ŵ

@z
� i Re

kx

 
@ 2 �u

@y @z
ŵ� @ �u

@z

@ ŵ

@y

!
� 0

�28�

Qŵÿ 1

k2x

@

@z
Q
@ ŵ

@z
� i Re

kx

�
@ 2 �u

@z2
ŵ� @ �u

@z

@ ŵ

@z

�

ÿ 1

k2xB
2

@

@z
Q
@ v̂

@y
� i Re

kxB 2

 
@ 2 �u

@y @z
v̂� @ �u

@y

@ v̂

@z

!

ÿ Ra T̂ � 0

�29�

sT̂� ikx Re Pr �uT̂ÿ �r2
2 ÿ k2x�T̂ÿ ŵ � 0 �30�

where the operator Q is de®ned by: Q=s/Pr+ikx Re
u-ÿ(H2

2ÿk 2
x). Note that @/@y or @/@z do not commute

with Q.
The unknowns (vÃ, wÃ , TÃ ) verify the following bound-

ary conditions:

v̂

�
y�2

1

2

�
� v̂

�
z �2

1

2

�
� @ v̂

@y

�
y �2

1

2

�
� 0 �31�

ŵ

�
y �2

1

2

�
� ŵ

�
z �2

1

2

�
� @ ŵ

@z

�
z �2

1

2

�
� 0 �32�

T̂

�
z �2

1

2

�
� @ T̂

@y

�
y �2

1

2

�
� 0 �33�

The third condition for vÃ and wÃ is deduced from the
continuity equation (18) and the boundary conditions
for uÃ: uÃ( y=21/2)=uÃ(z=21/2)=0.

The system of three equations (28)±(30) together
with the boundary conditions (31)±(33) is solved by
the classical Galerkin technique:

v̂� y, z� �
XI MAX

i�1

XJ MAX

j�1
aij � Ai� y�Bj�z� �34�

ŵ� y, z� �
XK MAX

k�1

XL MAX

l�1
bkl � Ck� y�Dl�z� �35�

T̂� y, z� �
XM MAX

m�1

XN MAX

n�1
cmn � Em� y�Fn�z� �36�

where (Ai ( y ))i = 1,I MAX, (Bj (z ))j = 1,J MAX, . . . ,
(Fn (z ))n = 1,N MAX are six complete sets of linearly

independent trial functions verifying the boundary con-
ditions of the problem. The computation of the coef-
®cients aij, bkl and cmn is carried out by the method of

weighted residues and yields an algebraic system of lin-
ear equations or, equivalently, the following eigenvalue
problem (noted L):
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L, �M� i Re Pÿ sN�
0@ a

b
c

1A � 0 �37�

where M, N and P are square matrices of size S=
(I MAX � J MAX+K MAX � L MAX+M
MAX � N MAX)2, and a, b and c are the vectors con-
structed with (aij), (bkl) and (cmn), respectively. Next,

we search for the complex eigenvalues s of the matrix

(N
ÿ1
M� i Re N

ÿ1
P) and the corresponding eigenvec-

tors (a, b, c), from which we get the disturbances (vÃ, wÃ ,
TÃ ). In fact, we are only interested in the highest real

part smax
r (the most destabilising disturbance), and in

the corresponding eigenvector. The associated imagin-
ary part represents the time pulsation of the pertur-

bations. The linear instability threshold is given by
smax
r =0. The critical Rayleigh number Ra� and wave

number k �x correspond to the minimum of the curve

Ra=f (kx) obtained when smax
r =0; s �i =si(Ra

�, k �x) is

the critical time pulsation. The Fortran subroutines

used in order to ®nd the eigenvalues have been
extracted from the Eispack package [35], and adapted
in double precision.

2.5. Taking into account the evenness of the solutions

In (34)±(36), we do not know a priori if the trial

functions are even or odd functions of y and z.
Therefore, we split each variable into the sum of four
terms of di�erent evenness:

8>><>>:
v̂� y, z� � v̂EE� y, z� � v̂EO� y, z� � v̂OE� y, z� � v̂OO� y, z�
ŵ� y, z� � ŵEE� y, z� � ŵEO� y, z� � ŵOE� y, z� � ŵOO� y, z�
T̂� y, z� � T̂EE� y, z� � T̂EO� y, z� � T̂EO� y, z� � T̂OO� y, z�

�38�

where the superscripts `E' stands for `even' and `O' for
`odd', the ®rst subscript relating to y and the second to
z. Then, each of the four terms of the relations (38) is

developed in a series of trial functions of prescribed
evenness. For instance:

v̂EO� y, z� �
XI MAX

i�1

XJ MAX

j�1
aEO
ij � AE

i � y�BO
j �z� �39�

where AE
i is even in y and BO

j is odd in z.
In this study, we have chosen the following trial

functions which all satisfy the boundary conditions

(31)±(33):

Indeed, for homogeneity reasons, any association is

not allowed. As an example, suppose that we select a

disturbance uÃ which is odd in y and odd in z, uÃ=uÃ OO.

From the continuity equation (18), vÃ must be even in

y, but remains odd in z, vÃ=vÃ EO; similarly, wÃ=wÃ OE

and, from the energy equation (22), TÃ must have the

same evenness as wÃ , i.e. TÃ=TÃ OE.

The evenness of the four possible cases is given in

Table 3, where we have also drawn di�erent possible

roll patterns in the ( y, z ) plane, from the components

vÃ and wÃ of the velocity perturbations. To get the com-

plete structures, the spatial evolution of uÃ and the x-

dependence of the perturbations (of the form eikxx)

must be taken into account. In the limiting case

8>>>>>>>>>>>><>>>>>>>>>>>>:

AE
i � y� � � y2 ÿ 1

4 �2T2iÿ2� y�; AO
i � y� � � y2 ÿ 1

4 �2T2iÿ1� y�
BE

j �z� � �z2 ÿ 1
4 �T2jÿ2�z�; BO

j �z� � �z2 ÿ 1
4 �T2jÿ1�z�

CE
k � y� � � y2 ÿ 1

4 �T2kÿ2� y�; CO
k � y� � � y2 ÿ 1

4 �T2kÿ1� y�
DE

l �z� � �z2 ÿ 1
4 �2T2lÿ2�z�; DO

l �z� � �z2 ÿ 1
4 �2T2lÿ1�z�

EE
m� y� � �ÿ1�m cos��2mÿ 2�py�; EO

m� y� � �ÿ1�m�1 sin��2mÿ 1�py�
F E

n �z� � �z2 ÿ 1
4 �T2nÿ2�z�; F O

n �z� � �z2 ÿ 1
4 �T2nÿ1�z�

�40�

where the Tn (x ) are the Chebyshev polynomials de®ned by: Tn (x )=cos(n arccos(x ))=2xTn ÿ 1(x )ÿTn ÿ 2(x ).
The eigenvalue problem L de®ned by (37) splits up into the sum of four distinct eigenvalue problems LA, LB,

LC and LD:

L � LA � LB � LC � LD

# # # # #0@ v̂
ŵ
T̂

1A 0@ v̂OO

ŵEE

T̂EE

1A 0@ v̂EO

ŵOE

T̂ OE

1A 0@ v̂EE

ŵOO

T̂ OO

1A 0@ v̂OE

ŵEO

T̂ EO

1A �41�
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kx 4 0, the form of the convective rolls can be directly

deduced from what is sketched in the ( y, z ) plane in
Table 3. Di�erent types of R// are liable to appear: an
even number of R// in Case A, an odd number of R//

in Case B, and an even number of superposed R// in

Cases C and D. We have veri®ed that the critical
Rayleigh number obtained from the eigenvalue pro-
blems LC and LD are always clearly higher than for

the Cases A and B.
When kx > 0, complex 3-D structures are observed

since the y-velocity component never vanishes (cf. [23]

and Fig. VI-34 of this reference). In Case A, the com-
putations show that the critical Rayleigh number is

reached for kx 1 3, and that the thermoconvective

structures appear like horseshoe-shaped transversal
rolls, as if the R_ were bent by the adherence e�ects
on the lateral walls. In Fig. 5, the form of the R_ at
the critical point is shown from the isotherms of T ',
deduced from the eigenvectors of problem LA. The
isocontours of T ' are drawn in the planes x = 0, y= 0
and z= 0, for a ¯ow at Pr = 10 in a duct of aspect

ratio B = 5, and for Re= 0, 0.4 and 1.2. The draw-
ings in plane z= 0 (top view) clearly show that the
rolls are more and more bent as Re increases.

Although the axis of these rolls is not a straight line,
we will continue noting them by R_. When kx > 0, for

Fig. 5. Isocontours of T ' at the critical point, in the planes x = 0, y= 0 and z = 0, for a ¯ow at Pr= 10, in a duct of aspect ratio

B= 5, and for Re= 0, 0.4 and 1.2.

Table 3

Possible forms of the perturbations in the ( y, z ) plane deduced from the y and z evenness of their amplitudes
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Case B in Table 3, the corresponding ¯ow pattern has

never been experimentally observed. Indeed, the ampli-
tude of u ' vanishes in the median vertical plane y = 0
because u ' is odd with respect to y.

2.6. Computation of the critical parameters of the ¯ow

The two eigenvalue problems which have to be
solved (LA and LB) involve six parameters: kx, s, Ra,
Re, Pr and B. Fig. 6 explains the di�erent steps to get

the critical Reynolds number Re� at a given Prandtl
number Pr and at a given aspect ratio B. As already
said, the ®rst step consists in seeking the minimum

value of Ra when kx varies between 0 and +1, for
smax
r =0. In graphs 6(a) and (b), for B=B 1 close to an

odd number, as an example, the bold point indicates

the position of the critical point (k �x, Ra�). Fig. 6(a)

shows the case of a ¯ow at small Reynolds number

Re=Re 1, for which the minimum value of Ra is

obtained at kx 1 3 by solving the eigenvalue problem

LA. Therefore, when Re=Re 1, the thermoconvective

patterns at the instability threshold take the form of 3-

D horseshoe-shaped transversal rolls. Fig. 6(b) shows

the case of a ¯ow at Re=Re 2 > Re 1, for which the

critical Rayleigh number is obtained at kx=0 by sol-

ving an eigenvalue problem of type LB. Therefore, the

thermoconvective patterns at the instability threshold

correspond to an odd number of longitudinal rolls. If

we take B=B 2, close to an even number, then the situ-

ation is sketched in Figs. 6(c) and 6(d), such that the

eigenvalue problem LA always provides Ra�. Four

neutral stability curves Ra=f (kx) at di�erent Reynolds

Fig. 6. The di�erent steps to get the critical Reynolds number Re �, for a duct of given aspect ratio B, and for Pr = cst.
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numbers, including Re 1 and Re 2, are given in graph
6(e) for the case B=B 1. It can be seen that the critical

point at kx=0 (Ra �//) is not a�ected by the ¯ow rate.
On the other hand, the ¯ow rate has a stabilizing e�ect
on the R_ at kx 1 3. The critical Reynolds number

Re� corresponds to a neutral stability curve Ra=f(kx)
with two equal minima: the ®rst at kx=0 and the sec-
ond at kx 1 3. For Re< Re�, the smallest Rayleigh

numbers correspond to the appearance of the R_,
while for Re> Re�, the smallest Rayleigh number cor-
responds to the appearance of an even or odd number

of R//, depending on B. The neutral stability curves
Ra �_ and Ra �// obtained from Fig. 6(e) are shown on
Fig. 6(f).

3. Results

3.1. A few results concerning the longitudinal rolls
(kx=0)

A few results, already published in [34], but which
are important for what follows, are reported in Table

4 and Fig. 7. They concern the variation of the critical
Rayleigh number for the longitudinal rolls Ra �// with

the transversal aspect ratio B.
Note that all these results are valid whatever Re and

Pr.

3.2. Critical parameters for the 2-D transversal rolls

when B 41

Critical values of Ra �_ when B 41 provide a lower

bound when B is ®nite and are thus interesting to
know. The evolution of Ra �_ as a function of Re when
B 41 is shown in Fig. 8, for Pr = 10ÿ6, 1, 7, 10 and

453 (this last value corresponds to a particular silicon
oil in some experiments reported in [9], while the ®rst
value should re¯ect the `zero Prandtl number solution'
expected to be valid for liquid metals). Well-known

results are again found: Ra �_ increases when Re
increases, and the basic ¯ow is more stabilized when
Pr is high. The numerical values of Ra �_ and k �x when

B 41 are given in Appendix A (Table A1).
Whatever the value of B, it may be shown that the

principle of exchange of stability, i.e. s �i =0, is only

Table 4

Ra �// as a function of B, with indication of the number of R// and of the type of the eigenvalue problem giving the critical values

Transversal aspect ratio B Critical Rayleigh number Ra �// Type of the eigenvalue problem (LA or LB) Number of R//

0.1 5,082,050 LB 1

0.5 12,113.3 LB 1

1 2585.03 LB 1

2 2013.24 LA 2

3 1870.72 LB 3

3.64 1848.87 LB 3

4 1810.48 LA 4

5 1779.00 LB 5

5.4 1767.28 LB 5

1 1707.76 LA or LB 1

Fig. 7. Critical Rayleigh number for the longitudinal rolls as

a function of the transversal aspect ratio, with indication of

the number of R//.

Fig. 8. Critical Rayleigh number for the transversal rolls as a

function of Re when B 41, at Pr= 10ÿ6, 1, 7, 10 and 453.
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satis®ed when Re= 0. For in®nite, as well as for ®nite
transversal aspect ratios, we get oscillations (s �i $0) as
soon as Re$0. Thus, in the general case, at the linear

instability threshold, the form of the perturbations cor-
responding to the R_ is:

0BBBB@
u 0�x, y, z, t�
v 0�x, y, z, t�
w 0�x, y, z, t�
P 0�x, y, z, t�
T 0�x, y, z, t�

1CCCCA �
0BBBB@

û� y, z�
v̂� y, z�
ŵ� y, z�
P̂� y, z�
T̂� y, z�

1CCCCAeik
�
xx eis

�
i
t �42�

Therefore, the R_ behave like travelling waves of

dimensionless critical wavelength l�=2p/k �x, of dimen-
sionless critical period t�=2p/vs �i v, and of dimension-
less critical velocity l�/t�. Remembering the scaling

factors for length and time [cf. relations (3) and (16)],
the dimensional wave velocity of the R_ is Vr�=l�h/
(t�h2/a0). We then de®ne the ratio (Vr/hU- i)� of the
transversal roll velocity to the average velocity of the

¯ow hU- i (cf. Table 2):

�
Vr

h �Ui
��
� j s

�
i �Re, Pr� j

k�x�Re, Pr�
a0

h

h

Re n 0

� j s
�
i �Re, Pr� j

k�x�Re, Pr�
1

Re Pr
�43�

The ratio (Vr/hU- i)� when B 41 is given in Table 5
for Pr = 10ÿ6, 1, 10 and 453. (Vr/hU- i)� varies with Re
and Pr. However, this ratio can be considered almost

as a constant, at a given Prandtl number, since the fre-
quency of the wave s �i is at ®rst-order proportional to
Re. Corrections in O(Re 3) must be added at large Re

[16]. Generally, (Vr/hU- i)� is greater than unity (e.g.
030% higher at Pr = 10), except when Pr is very
small (e.g. Pr= 10ÿ6).

3.3. Critical parameters for the 3-D transversal rolls
(k �x 1 3)

Now, we focus on the variations of the critical par-

ameters and of the critical characteristics [Ra �_, k
�
x, s

�
i

and (Vr/hU- i)�] of the 3-D R_ ¯ows, as a function of

Re, B and Pr, respectively. All the results are presented

in the form of ®gures, whereas the numerical data are

given in Appendix B.

The evolution of Ra �_ as a function of Re is pre-

sented at Pr = 10, for B = 1, 2 and 5 in Fig. 9 (the

case B 41 is also drawn on the ®gure). It can be

noted that the stabilizing in¯uence of the lateral verti-

cal walls on the onset of the 3-D R_ is more pro-

nounced in narrow ducts. The dotted horizontal lines

are from Table 4. Thus, the values of Re� at Pr = 10

can be determined from Fig. 9: Re�1 0.6, 1.2 and 1.1

for B = 1, 2 and 5, respectively [cf. Table B1 in

Appendix B for the precise values and Fig. 10 for

Re�=f (B )]. Note that the variation of Re� with B is

Table 5

Ratio of the R_ velocity, Vr, to the average velocity of the 2-D basic ¯ow (hU- i=U 0), at the instability threshold, as a function of

Re and Pr, when B41

Re (Vr/hU- i)� at Pr = 10ÿ6 (Vr/hU- i)� at Pr = 1 (Vr/hU- i)� at Pr= 10 (Vr/hU- i)� at Pr= 453

0.2 0.8833 1.1703 1.296 1.380

0.4 0.8833 1.1703 1.296 1.410

0.6 0.8833 1.1703 1.296 1.424

0.8 0.8833 1.1703 1.297 1.432

1 0.8833 1.1703 1.297 1.438

2 0.8833 1.1703 1.300 1.453

3 0.8833 1.1702 1.304 1.459

4 0.8832 1.1701 1.309 1.462

6 0.8830 1.1700 1.320 1.465

8 0.8829 1.1696 1.329 1.465

10 0.8826 1.1692 1.335 1.463

Fig. 9. Critical Rayleigh number Ra �_ for the 3-D R_, as a

function of Re, at Pr= 10, for di�erent aspect ratios B of the

duct; the intersection with the horizontal lines Ra �//=f (Re ) is

also drawn; S= 48 � 48.
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not monotonous. In the limit case B 41, convection
always appears in the form of R// and Re�=0. On the

other hand, when B 4 0 and when there is no average
¯ow (Re = 0), it can be shown from [36,37] that Ra �_
and Ra �// tends to in®nity according to the following

laws:

when B40,

8>><>>:
Ra�?�Re � 0�4 cst

B 2
�36�

Ra�==�Re � 0�4 500:56

B 4
�37�

�44�

Thus, the di�erence (Ra �//ÿRa �_)(Re = 0), which partly
determines Re�, tends to in®nity when B 4 0.

Therefore, when the transversal aspect ratio B of a
duct is very small, Re� is very high and the convection
is expected to appear in the form of transversal rolls.

The variation of k �x as a function of Re is plotted on
Fig. 11, at Pr = 10 and B = 1, 2, 5 and 1. The criti-
cal wave number is shown to decrease monotonously

when Re increases (except at B = 1). Note the signi®-

cative in¯uence of Re on k �x particularly at B = 2. The

variation of (Vr/hU- i)� as a function of Re, as well as
the variation of (Vr/U

- max)� (cf. Table 2), are presented

in Fig. 12, at Pr= 10 and B = 1, 2, 5 and 1. It can
be noted that these two ratios are almost independent
of Re as already said in the discussion of Eq. (43).

Whatever B, the propagation velocity of the 3-D R_ is
higher than the average velocity of the basic ¯ow
(except at Pr = 10ÿ6, cf. Table 5), but slower than the

maximum velocity, according to the relation between
hU-i and U

-max of Table 2.

Fig. 10 gives the critical Reynolds numbers Re� as a
function of the aspect ratio, for Pr = 1, 10 and 100
(see also Table B3 in Appendix B for Pr= 453). As

said before, Re� tends to in®nity when B 4 0, and
tends to zero when B 41. The three curves present a

series of minima and maxima which coincide with the
minima and maxima of the curves Ra �//=f (B ) of Fig.
7, a fact that can be easily understood as follows: each

time that there is a maximum in Fig. 7, that means
that R// are di�cult to form or, in other words, that
the Reynolds number necessary to align the rolls paral-

lel to the mean ¯ow must be high. The e�ect of Pr can
also be explained: small Pr means small viscosity, thus

higher Reynolds numbers. Note that, for usual liquids
(say water, Pr = 7), the transitional Reynolds number
remains of order 1: Re�> 15 is only attained when

B < 1 and Pr < 1.
The critical wave number k �x of the 3-D R_ when

Re=Re�(B, Pr ) is given as a function of B for Pr = 1,
10, 100 and 453 in Fig. 13. k �x tends to 3.116 when
B 41. Note that k �x practically does not change with

Pr, for Pr> 1 and B > 1. The variation of (Vr/hU- i)�
as a function of B, when Re=Re�, is presented on Fig.
14. From Figs. 13 and 14, it appears that the vari-

ations of k �x (Re
�) and (Vr/hU- i)�(Re�) with B are more

regular when B > 1.6 than when B is smaller.

Fig. 11. Critical wave number k �x for the 3-D R_, as a func-

tion of Re, for B = 1, 2, 5 and B41, at Pr = 10;

S= 48 � 48.

Fig. 12. Ratios of the wave velocity Vr of the 3-D R_ at the

critical point to the average velocity hU-i or to the maximum

velocity U
-max of the basic ¯ow, as a function of Re, for

B = 1, 2, 5 and B 41, at Pr = 10; S= 48 � 48.

Fig. 10. Critical Reynolds number Re � as a function of the

aspect ratio of the duct B, for Pr= 1, 10, 100; S= 12 � 12.
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The numerical values of the critical parameters when

Re=Re� are listed as a function of Pr, for B = 2 and

5.2, in Table B4 of Appendix B. From this table, we

successively present the functions Log(Re�)=
f (Log(Pr )), k �x=f (Log(Pr )) and (Vr/hU- i)�=
f (Log(Pr )), for B = 5.2, in Figs. 15±17. From Fig. 15,

it appears that, when Pr is su�ciently small (Pr < 0.01

when B = 5.2), Re� tends to a constant (which in fact

depends on the aspect ratio). That means that, even at

Pr = 0, Ra �_ still increases when Re increases. On the

other hand, for `high' values of Pr (Pr > 5 when

B = 5.2), Re� tends to zero following a law of the

type; Re�=C(B )/Pr, where C(B ) is a function of B. In

Fig. 16, it can be noted that the wave number k�x at

the critical point Re=Re� tends to a constant when Pr

is small (Pr < 0.01). From the ratio (Vr/hU- i)� at the

critical point Re=Re� and for B = 5.2 (cf. Fig. 17),

the wave travels at the mean velocity at small Pr

(Pr< 0.01, say liquid metals), but at 1.4 to 1.5 times

Fig. 14. (Vr/hU- i)� as a function of B, at Re=Re �(B, Pr ) and
for di�erent Prandtl numbers; S= 12 � 12.

Fig. 16. k �x as a function of Pr, at Re=Re �(B, Pr ) and

B = 5.2; S= 48 � 48.

Fig. 17. (Vr/hU- i)� as a function of Pr, at Re=Re �(B, Pr ) and
B = 5.2; S= 48 � 48.

Fig. 13. Critical wave number k �x at Re=Re �, as a function

of the aspect ratio of the duct B, for Pr = 1, 10, 100 and 453;

S= 12 � 12.

Fig. 15. Re � as a function of Pr, at B = 5.2; S= 48 � 48.
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the mean velocity for all organic liquids (the smallest
Prandtl number for a transparent liquid is found to be
equal to 4 for acetone).

4. Discussion and conclusions

4.1. About the critical Rayleigh and Reynolds numbers:
Ra �//, Ra

�
_ and Re�

In Table 6, we present values of Ra �// and Re�

obtained experimentally or by 3-D direct numerical
simulations in three di�erent papers, at di�erent

Prandtl numbers and aspect ratios. These values are
compared with those obtained by the present 3-D lin-
ear stability study. It can be noted that the values of

Ra �// are in excellent agreement. However, the values of
Re� computed by the linear theory give only an upper
bound. This is quite natural since the notions of con-
vective instability, which introduces a new critical

Rayleigh number curve (noted Ra conv
_ ), has to be

invoked. For Ra �_ < Ra< Ra conv
_ , the ¯ow is convec-

tively unstable: the basic ¯ow remains stable if it is

submitted to a unique perturbation that grows in time,
but that is carried out of the duct by the mean ¯ow;
however, the basic ¯ow becomes unstable when it is

submitted to a permanent white noise (for instance).
For Ra> Ra conv

_ , the ¯ow is absolutely unstable: a
unique perturbation is su�cient to produce a periodic
pattern (see Refs. [38,39] for more details about the

notions of convective and absolute instability).
In Fig. 18, we present the stability diagram of the

PBF obtained experimentally by Ouazzani et al.

[13,14], in the case of water (Pr = 6.4) in a 3.6-aspect
ratio duct. This diagram is compared with the theoreti-
cal transition curves Ra �// and Ra �_ computed for the

experimental conditions Pr= 6.4 and B = 3.6, and
also with the curve Ra conv

_ only available from a
Ginzburg±Landau approach for B 41 [16,27]. The

experimental stability diagram presents three main

zones: the classical Poiseuille ¯ow in Zone, I, transver-

sal rolls in II, and longitudinal rolls in III.

As already seen in Table 6, the linear stability curve

Ra �// is in very good agreement with the horizontal sep-

aration line between Zones I and III. On the other

hand, the curve Ra �_ does not correspond to the tran-

sition between Zones I and II and gives Re�1 1.7,

which is di�erent from the experimental critical

Reynolds number Re �exp 1 0.35. Once again, this is

quite natural since, in Ouazzani's experiments [13,14],

no sustained mechanical perturbations are introduced

Table 6

Comparison of experimental or numerical values of Ra �// and Re � found in the literature with the values obtained by the present

linear stability study

Reference Methodology Pr B Ra �// Re �

Chen and Lavine [40] 3-D numerical simulation 0.7 2 2000 521

Present study Linear stability 2013 8.5

Ouazzani et al. [13,14] LDA 6.4 3.6 1840280 0.3520.1

Present study Linear stability 1849 1.7

Luijkx et al. [24] Shadowgraphy 453 5.25 17102220 (6.420.8) � 10ÿ3

Present study Linear stability 1770 23 � 10ÿ3

Fig. 18. Comparison of the stability diagram determined ex-

perimentally by Ouazzani et al. [13,14], with the results of the

present linear stability study and with the weakly non-linear

theory of MuÈ ller et al. [16] (see also [15]).
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near the inlet, and therefore, the curve Ra conv
_ agrees

much better with the transition between Zones I and

II. Thus, the weakly non-linear theory gives a critical
Reynolds number Re�1 0.45 much closer to the ex-
perimental value 0.35. As already said, the present lin-

ear theory gives an upper bound for Re�, but has the
advantage to account for the lateral con®nement,
whereas the 2-D theory of MuÈ ller et al. [16] not

(Ra �_=1730 instead of 1708 at Re= 0). Finally, any
experiment with sustained noise (mechanical or ther-
mal, say, e.g. by high power laser ¯ashes) should only
be compared with the present study.

To summarize, the 3-D linear theory allows one to
determine the instability thresholds at Re= 0, and the

transition Ra �// between the basic ¯ow and the R//.
However, the curve Ra �_ does correspond to a physi-
cally observed transition between the basic ¯ow and

the R_, only in experiments (not available today) with
continuous inlet perturbations of su�cient amplitude.
Without sustained noise, it is preferable to use a con-

vective weakly non-linear theory, even 2-D. Note that,
to our knowledge, a convective stability theory, taking
into account the lateral con®nement of the channel,
has never been developed for the present problem.

Table 7

Comparison of di�erent values of (Vr/hU- i)� at Re=Re � found in the literature with the values obtained by the present linear stab-

ility study

Reference Vr/hU- i=f (Ra ) Methodology Pr B (Vr/hU- i)� at Ra=Ra �//

SchroÈ der and BuÈ lher [28] Vr/hU- i=1.53±3.18 � 10ÿ5Ra 3-D numerical simulation 530 4.1 1.47

Present study Linear stability 1.54

Ouazzani et al. [13] Vr/hU- i=1.62±8.67 � 10ÿ5Ra LDA 6.4 3.6 1.46

Present study Linear stability 1.5

Nicolas et al. [33] Vr/hU- i=1.28±0.82 � 10ÿ5Ra 2-D numerical simulation 6.4 1 1.27

Present study Linear stability 1.28

MuÈ ller et al. [16] Vr/hU- i=1.19±1.1 � 10ÿ5Ra Ginzburg±Landau equation 1 1 1.17

Present study Linear stability 1.17

Table 8

Comparison of di�erent values of kx found in the literature with the values obtained by the present linear stability study

Reference Methodology Pr B Ra Re kx

Luijkx et al. [24] Shadowgraphy 450 5.25 4505 0.328 � 10ÿ3 2.856

4505 0.95 � 10ÿ3 2.923

Present study Linear stability 1770 23 � 10ÿ3 2.956

SchroÈ der and BuÈ lher [24] 3-D numerical simulation 530 4.1 7600 0.89 � 10ÿ3 2.596

7600 (1.42 R Re R 3) � 10ÿ3 2.732

Present study Linear stability 1810 0.03 2.94

Nicolas et al. [33] 2-D numerical simulation 6.4 1 1836 0.3 3.19

Present study Linear stability 7 1794 2 3.081

MuÈ ller et al. [16] 2-D numerical simulation 1 1 1903 2 3.155

2420 4 3.307

Present study Linear stability 1713 2 3.117

1729 4 3.118
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4.2. About the ratio of the transversal roll velocity to the
average velocity of the basic ¯ow: (Vr/hU- i)�

It is well-known that the ratio (Vr/hU- i)� decreases
linearly with Ra and is independent of Re

[4,12,13,16,28,33]. In the present study, a relative inde-
pendence of Re is also veri®ed. Indeed, the variation of
(Vr/hU- i)� is less than 4% when 0 R Re R Re� (cf. Fig.
12 and Tables B1 and B2 in Appendix B). In Table 7,
we compare values of (Vr/hU- i)� extracted from the lit-
erature with the results of the present work. The vari-

ation laws of Vr/hU- i with Ra are given only for the
results of the literature (experimental or non-linear the-
ories). It can be noted that the linear stability accounts
very well for the results of the literature at the critical

point whatever Pr and B. Notice that, at Pr = 6.4, the
in¯uence of B is perfectly taken into account (compare
the noticeable di�erence between B = 3.6 and

B 41).

4.3. About the wavelength of the transversal rolls: k �x

Very few results concerning the variation with Ra

and Re of the wave number kx of the 3-D transversal
rolls are available in the literature. Indeed, the precise
knowledge of kx requires long computational domains
or long experimental channels and, consequently, the

numerical cost or the experimental di�culty are
increased. Furthermore, the only available results when
B is ®nite are for high Rayleigh numbers. In Table 8,

we compare results from the literature with results of
the linear stability for the same values of B and Pr,

but at di�erent Ra and Re. The orders-of-magnitude
are in good agreement. However, it is di�cult to go

further into the comparison, because kx depends on Ra
and Re.
To conclude, the main interest of this study is to

give numerical values of critical Rayleigh numbers,
both for longitudinal and transversal rolls as a func-
tion of Re, Pr and B, taking for the ®rst time into

account the real 3-D character of the basic Poiseuille
¯ow [Eq. (10)] and of the disturbances as well. In par-
ticular, even for transversal rolls, the three velocity

components are non-vanishing. What is today missing,
and of course needed, is a 3-D study of the convective
instability (Ra conv

_ ) as a function of the lateral con®ne-
ment described by B, together with new experiments

with sustained noise at the inlet.

Appendix A

Critical parameters for the 2-D transversal rolls in
ducts of in®nite transversal aspect ratios (B 41)
(Table A1).

Appendix B

Critical parameters as a function of Re, B and Pr

for the 3-D transversal rolls (kx 1 3) in ducts of ®nite
transversal aspect ratio (1 R B R 5.2) (Tables B1±B4).

Table A1

Critical Rayleigh number Ra �_ and critical wave number k �x as a function of Re, when B 41, at Pr = 10ÿ6, 1, 7, 10 and 453

Re Pr = 10ÿ6 Pr= 1 Pr = 7 Pr = 10 Pr= 453

Ra �_ k �x Ra �_ k �x Ra �_ k �x Ra �_ k �x Ra �_ k �x

0 1707.76 3.116 1707.76 3.116 1707.76 3.116 1707.76 3.116 1707.76 3.116

0.2 1707.76 3.116 1707.81 3.116 1709.49 3.116 3213.97 3.139

0.4 1707.77 3.116 1707.97 3.116 1714.67 3.113 4528.85 3.204

0.6 1707.79 3.116 1708.24 3.116 1723.26 3.109 5684.57 3.230

0.8 1707.81 3.116 1708.61 3.116 1735.20 3.104 6749.47 3.249

1 1707.84 3.116 1709.08 3.116 1729.61 3.107 1750.42 3.097 7755.20 3.263

1.2 1707.88 3.116 1709.67 3.116 1768.80 3.089 8720.17 3.273

1.4 1707.92 3.116 1710.35 3.117 1790.25 3.081 9655.88 3.282

1.6 1707.97 3.116 1711.15 3.117 1814.61 3.071 10,570.2 3.288

1.8 1708.03 3.116 1712.05 3.117 1841.77 3.061 11,468.9 3.294

2 1708.09 3.116 1713.05 3.117 1793.62 3.081 1871.57 3.051 12,356.3 3.299

3 1708.50 3.116 1719.67 3.117 2054.78 3.003 16,727.0 3.314

4 1709.08 3.116 1728.95 3.118 2281.36 2.972 21,188.8 3.308

6 1710.72 3.115 1755.51 3.120 2376.28 2.959 2805.05 2.977 31,366.0 3.195

8 1713.02 3.114 1792.83 3.123 2795.59 2.948 3373.72 3.025 44,741.6 2.937

10 1715.98 3.113 1841.05 3.126 3269.37 2.966 3987.50 3.055 62,927.7 2.512

20 1740.40 3.104 2252.38 3.155 6621.63 2.973 8574.21 2.885 100,168.1 6.928
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Table B1

Critical parameters as a function of Re, for ¯ows of 3-D horseshoe-shaped R_, at Pr = 10 and B= 1, 2 and 5; S= 48 � 48a

Pr= 10

Re Ra �_ k �x s �i (Vr/hU-i)�

B= 1 (Ra �//=2585.03, Re �=0.585) 0.0 2369.07 3.170 0.0

0.1 2375.45 3.169 ÿ4.552 1.436

0.2 2394.51 3.164 ÿ9.104 1.439

0.3 2426.00 3.158 ÿ13.664 1.442

0.4 2469.46 3.150 ÿ18.236 1.447

0.5 2524.22 3.140 ÿ22.840 1.455

0.6 2589.30 3.131 ÿ27.492 1.463

0.8 2744.75 3.119 ÿ37.052 1.485

1.0 2920.52 3.119 ÿ47.172 1.512

1.5 3333.98 3.157 ÿ75.040 1.585

2.0 3640.49 3.157 ÿ103.20 1.634

B= 2 (Ra �//=2013.24, Re �=1.196) 0.0 1842.73 3.018 0.0

0.2 1861.46 2.993 ÿ9.560 1.597

0.4 1895.54 2.919 ÿ18.956 1.624

0.6 1924.86 2.845 ÿ28.012 1.641

0.8 1952.30 2.789 ÿ36.808 1.650

1.0 1981.60 2.739 ÿ45.356 1.656

1.2 2013.99 2.692 ÿ53.612 1.660

1.4 2049.63 2.643 ÿ61.540 1.663

1.6 2088.24 2.592 ÿ69.108 1.666

1.8 2129.40 2.539 ÿ76.284 1.669

2.0 2172.63 2.484 ÿ83.040 1.671

B= 5 (Ra �//=1779.00, Re �=1.095) 0.0 1712.09 3.038 0.0

0.2 1715.29 3.028 ÿ8.928 1.474

0.4 1723.29 3.013 ÿ17.784 1.476

0.6 1735.38 2.994 ÿ26.536 1.477

0.8 1751.08 2.971 ÿ35.144 1.479

1.0 1770.07 2.947 ÿ43.600 1.479

1.2 1792.24 2.922 ÿ51.920 1.481

1.4 1817.53 2.898 ÿ60.120 1.482

1.6 1845.85 2.875 ÿ68.196 1.483

1.8 1877.05 2.851 ÿ76.148 1.484

2.0 1910.97 2.828 ÿ83.964 1.485

a The position of Ra �// and Re � is indicated by a horizontal separation line in each case.
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Table B2

Critical parameters as a function of Re, for ¯ows of 3-D horseshoe-shaped R_, at Pr = 453 and B= 5.2; S= 48 � 48a

Pr = 453

Re Ra �_ k �x s �i (Vr/hU- i)�

B= 5.2 (Ra �//=1770.05, Re �=0.02294) 0.0 1711.45 3.044 0.0

0.01 1724.52 3.017 ÿ20.400 1.493

0.02 1757.28 2.971 ÿ40.268 1.496

0.03 1806.21 2.921 ÿ59.504 1.499

0.04 1869.75 2.873 ÿ78.212 1.502

0.1 2422.68 2.621 ÿ181.228 1.526

0.2 3333.73 2.793 ÿ397.120 1.569

1.0 7091.21 3.335 ÿ2485.67 1.645

2.0 8023.63 3.683 ÿ5535.04 1.659

a The position of Ra �// and Re � is indicated by a horizontal separation line.
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Table B3

Critical parameters at point (Re=Re �; Ra=Ra �//) as a function of B, for ¯ows of 3-D horseshoe-shaped R_, at Pr = 1, 10, 100

and 453; S= 12 � 12

B Re � k �x s �i (Vr/hU-i)�

Pr= 1 0.6 31.00 2.46 ÿ98.80 1.30

1.0 5.70 3.08 ÿ23.89 1.36

1.6 12.53 2.78 ÿ51.75 1.49

2.0 8.20 2.79 ÿ33.57 1.47

2.6 10.64 2.82 ÿ43.05 1.44

3.0 8.74 2.88 ÿ35.34 1.40

3.6 8.59 2.94 ÿ34.97 1.38

4.0 7.50 2.98 ÿ30.48 1.36

4.6 7.17 3.01 ÿ28.96 1.34

5.0 6.51 3.03 ÿ26.18 1.33

5.4 6.00 3.04 ÿ24.03 1.32

Pr= 10 0.2 248.4 6.29 ÿ24,527 1.57

0.6 3.17 2.88 ÿ130.60 1.43

1.0 0.58 3.13 ÿ26.70 1.46

1.6 2.37 2.71 ÿ108.51 1.69

2.0 1.52 2.74 ÿ69.06 1.65

2.6 2.02 2.74 ÿ89.05 1.61

3.0 1.62 2.83 ÿ72.44 1.58

3.6 1.60 2.89 ÿ71.30 1.54

4.0 1.39 2.93 ÿ61.87 1.52

4.6 1.32 2.97 ÿ58.58 1.49

5.0 1.20 2.99 ÿ52.83 1.47

5.4 1.10 3.01 ÿ48.42 1.46

Pr= 100 0.1 1774.5 8.48 ÿ2.236 � 106 1.49

0.6 0.316 2.94 ÿ135.49 1.46

1.0 0.058 3.13 ÿ26.95 1.47

1.6 0.247 2.72 ÿ115.98 1.72

2.0 0.157 2.75 ÿ72.40 1.68

2.6 0.208 2.74 ÿ93.48 1.64

3.0 0.167 2.83 ÿ75.57 1.60

3.6 0.164 2.89 ÿ74.28 1.57

4.0 0.142 2.93 ÿ64.29 1.54

4.6 0.135 2.97 ÿ60.81 1.51

5.0 0.122 2.99 ÿ54.78 1.50

5.4 0.112 3.01 ÿ50.16 1.48

Pr= 453 0.1 1770.2 8.50 ÿ1.014 � 107 1.49

0.6 0.070 2.94 ÿ135.90 1.46

1.0 0.013 3.13 ÿ26.97 1.48

1.6 0.055 2.73 ÿ116.31 1.73

2.0 0.035 2.75 ÿ75.52 1.75

2.6 0.046 2.74 ÿ93.63 1.64

3.0 0.037 2.83 ÿ75.97 1.61

3.6 0.036 2.89 ÿ74.38 1.57

4.0 0.032 2.93 ÿ64.37 1.54

4.6 0.030 2.97 ÿ60.88 1.52

5.0 0.027 2.99 ÿ54.84 1.50

5.4 0.025 3.01 ÿ50.22 1.48
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